Steps in Performance Improvement

- Organize participation for performance improvement
- Prioritize areas for action
- Explore “root causes” of performance
- Develop and implement improvement plans
- Regularly monitor and report progress

Source: NPHPSP Users’ Guide

Organize participation for performance improvement

- Leadership support and role
 - What is leadership’s vision, commitment, expectation?
- Build the process strategically
 - Incorporate QI into broader initiatives (MAPP, HP2010)
 - Involve others
 - Statewide coordinating/steering comm. (esp. with multiple instruments)

Prioritize areas for action

- Examine the results
 - What stands out?
 - Comports with your realities?
- Open discussion of findings
 - Expectations vs. results?
- Set priorities
 - Limit the universe of priorities

Explore Root Causes

- Crucial Step
 - Will spend more time on this later...
- Explore the WHY of performance problems
 - Resist jumping to solutions
- Most performance issues can be traced to well-defined systems causes:
 - Policies, leadership, funding, incentives, information, personnel, or coordination

Develop and implement improvement plans

- Remember why we did this in the 1st place
- The search for better outcomes may have many paths, and multiple stops
To Carry Out a Quality Improvement Process, “Plan-Do-Check-Act”

<table>
<thead>
<tr>
<th>Plan</th>
<th>Do</th>
<th>Check</th>
<th>Act</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan changes aimed at improvement, matched to root causes</td>
<td>Carry out changes; try first on small scale</td>
<td>See if you get the desired results</td>
<td>Make changes based on what you learned; spread success</td>
</tr>
</tbody>
</table>

Regularly monitor and report progress

- Regular reports necessary to chart progress
- Benchmark against self and others
 - Same industry, other industries
- Reports do not have to be computerized (although it helps!), expensive, color...

Definition of Quality Improvement in Public Health

“Quality improvement in public health is the use of a deliberate and defined improvement process, such as Plan-Do-Check-Act, which is focused on activities that are responsive to community needs and improving population health.

It refers to a continuous and ongoing effort to achieve measurable improvements in the efficiency, effectiveness, performance, accountability, outcomes, and other indicators of quality in services or processes which achieve equity and improve the health of the community.”

This definition was developed by the Accreditation Coalition Workgroup (Lee Betsch, Ron Bialek, Abby Cofsky, Lisa Corso, Jack Moran, William Riley, and Pamela Russo)

We are not a patient people! Always in a hurry to move on to the next thing.

Contrasting Big "QI", Little “qi”, and Individual “qi”

<table>
<thead>
<tr>
<th>Topic</th>
<th>Big “QI” – organization-wide</th>
<th>Little “qi” – program/unit</th>
<th>Individual “qi”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>System focus</td>
<td>Specific project focus</td>
<td>Daily work level focus</td>
</tr>
<tr>
<td>Quality Improvement</td>
<td>Tied to the Strategic Plan</td>
<td>Program/unit level</td>
<td>Tied to yearly individual performance</td>
</tr>
<tr>
<td>Planning</td>
<td></td>
<td>Performance of a process</td>
<td>Performance of daily work</td>
</tr>
<tr>
<td>Evaluation of Quality</td>
<td>Responsiveness to a community need</td>
<td>over time</td>
<td>Daily work</td>
</tr>
<tr>
<td>Processes</td>
<td>Cut across all programs and activities</td>
<td>Delivery of a service</td>
<td>Daily work</td>
</tr>
<tr>
<td>Quality Improvement</td>
<td>Tied to the Strategic Plan</td>
<td>Individual program/unit level plans</td>
<td>Individual performance plans</td>
</tr>
<tr>
<td>Goals</td>
<td>Tied to the Strategic Plan</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problems – functional (silos) goals result in process gaps, overlaps, rework, etc.
Customer wants may not be in sync with what each department wants

Now the focus is on providing the customer with product knowledge, right cars for their needs, easy access, multiple locations, insurances, and safe vehicles

What Is Quality?

Today the most progressive view of quality is that it is defined entirely by the customer or end user and is based upon that person's evaluation of his or her entire customer experience

The customer experience is the aggregate of all the Touch Points that customers have with the organization's product and services, and is by definition a combination of these
Deming Cycle – PDCA or PDSA

- PDCA was made popular by Dr. Deming who is considered by many to be the father of modern quality control; however it was always referred to by him as the “Shewhart cycle”

Continuous Improvement

- The continuous improvement phase of a process is how you make a change in direction. The change usually is because the process output is deteriorating or customer needs have changed.

The ABC’s of PDCA, G. Gorenflo and J. Moran

- Plan
 1. Identify and Prioritize Opportunities
 2. Develop AIM Statement
 3. Describe the Current Process
 4. Collect Data on Current Process
 5. Identify All Possible Causes
 6. Identify Potential Improvements

 7. Develop Improvement Theory
 8. Develop Action Plan

- Do

 1. Implement the Improvement
 2. Collect and Document the data
 3. Document Problems, Observations, and Lessons Learned

- Check/Study

 1. Reflect on the Analysis
 2. Document Problems, Observation, and Lessons Learned

- Act

 1. Adopt
 2. Standardize
 3. Adapt
 4. Abandon

- Maintenance and Standardization

 - The Maintenance and Standardization phase of a process is how we hold the gains. If our process is producing the desired results we standardize what we are doing.

Integrated Cycle

- The SDCA and PDCA cycles are separate but rather integrated. Once we have made a successful change we standardize and hold the gain.
- When the process is not performing correctly we go from SDCA to PDCA and once we have the process performing correctly we standardize again.
- This switching back and forth between SDCA and PDCA provides us with the opportunity to keep our process customer focused.

General Approach on How to Use the Basic Tools of Quality Improvement

- Issue To Consider
 - Brainstorm & Consolidate
 - Flow Chart Existing Process
 - Solve and Effect Diagram
 - Monitor New Process & Hold The Gains

- Flow Chart New Process
 - “As Is” State to “Should Be” State

- Analyze Information and Develop Solutions
 - “As Is” State to “Should Be” State

- Translate Data into Information
 - Pie Charts
 - Pareto Charts
 - Histograms
 - Scatter Plots, etc.

- Data Management Strategy
 - Gather Data on Pain Points
 - Data Management Strategy

The Basic Tools of QI

- Flow Chart
- Cause and Effect Diagrams
- Pareto Chart
- Check Sheet
- Histogram
- Scatter Diagram
- Control Chart

Flow Charting

“If you can't describe what you are doing as a process, you don't know what you're doing”

W. Edwards Deming

Flow Chart Benefits

- Creates a common vision
- Establishes the "AS IS" baseline – Current State
- Baseline to measure improvements
- Identifies wasteful steps – activities/waits
- Uncovers variations
- Shows where improvements could be made and potential impacts
- Training tool

Flow Chart People Benefits

- People involved in constructing a flow chart begin to:
 - Better understand the process
 - Understand the process in the same terms
 - Realize how the process and all the people involved, including them, fit into the overall process or business
 - Identify areas for improving the process
 - Become enthusiastic supporters to quality and process improvement
Flow Charting Construction

- Clearly define the process boundaries to be studied
- Define the first and last steps – start and end points
- Get the right people in the room
- Decide on the level of detail
- Complete the big picture first – macro view
- Fill in the details – micro view
- Gather information of how the process flows:
 - Experience
 - Observation
 - Conversation
 - Interviews
 - Research
- Clearly define each step in the process
 - Be accurate and honest

Flow Charting Steps

- Use the simplest symbols possible – Post-its
- Make sure every loop has an escape
- There is usually only one output arrow out of a process box. Otherwise, it may require a decision diamond
- Trial process flow – walk through people involved in the process to get their comments
- Make changes if necessary
- Identify time lags and non-value-adding steps

Flow Chart Symbols

- **Start/End Bookends**
- **Activity**: Operation/Inspection
- **Decision**
- **Input/Output Data**
- **Document**
- **Forms**

Flow Lines

- **Flow Lines**
- **Connector**
- **Comment/Collector**
- **Display**
- **Manual Input**
- **Preparation**
- **Unfamiliar/Research**

Constructing a Flow Chart

- Asking questions is the key to flow charting a process
 - For this process:
 - Who is the customer(s)?
 - Who is the supplier(s)?
 - What is the first thing that happens?
 - What is the next thing that happens?
 - Where does the input(s) to the process come from?
 - How does the input(s) get to the process?
 - Where does the output(s) of this operation go?
 - Is there anything else that must be done at this point?

Adding Time Lines

- **As Is Flow Chart**
- **Could Be Flow Chart**
- **Should Be Flow Chart**

Analyzing A Flow Chart

- Examine each:
 - Activity symbol – value/cost?
 - Decision point – necessary/redundant?
 - Choke Points – bottlenecks?
 - Rework loop – time/cost?
 - Handoff – is it seamless?
 - Document or data point – useful?
 - Wait or delay symbol – why?/reduce/eliminate
 - Transport Symbol – time/cost/location?
 - Data Input Symbol – right format/timely?
 - Document/Form Symbol – needed/cost/value?
Flow Chart Summary Matrix

<table>
<thead>
<tr>
<th>Flow Chart Step Number</th>
<th>Type of Step</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Touch Point (T)</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>2. Cost</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>3. FTEs/Person Hrs</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>4. Supplies Required</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>5. Equipment Required</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>6. Space Required</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>7. Time</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>8. Suppliers Required</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>9. Etc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Value added</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of Step: P – process, D – decision, T – transport, W – wait, S – storage
Delta = Proposed – Actual – the more negative the subtraction the better – more savings

Flow Charting Exercise

Cause and Effect Diagrams

Moving from Treating Symptoms
To
Treating Causes

Problem Solving – What we usually see is the tip of iceberg – “The Symptom”

The Symptom

The Root Causes
Invisible
Hidden

Problem Solving

- When confronted with a problem most people like to tackle the obvious symptom and fix it
- This often results in more problems
- Using a systematic approach to analysis the problem and find the root cause is more efficient and effective
- Symptom – sign or indication
- Cause – whatever makes something happen
Cause and Effect Diagrams

- Organizes group knowledge about causes of a problem and display the information graphically
- Resemble a fish skeleton and sometimes called a Fishbone Diagram

Cause and Effect Diagrams - Construction

- Write the issue as a problem statement on the right hand side of the page and draw a box around it with an arrow running to it
- This issue is now the effect

Cause and Effect Diagrams - Construction

- Generate ideas as to what are the main causes of the effect
- Label these as the main branch headers

Typical Main Headers are:
- 4 M's – Manpower, Materials, Methods, Machinery
- People
- Policies
- Materials
- Equipment
- Life style
- Environment
- Etc.

Cause and Effect Diagrams - Construction

- For each main cause category brainstorm ideas as to what are the related sub-causes that might affect our issue
- Use the 5 Why's technique when a cause is identified
- Keep repeating the question until no other causes can be identified
- List the sub-cause using arrows

Selecting Items to Investigate

- When the Cause and Effect Diagram is finished it is time to decide what few areas should be focused on to develop solutions to solve the effect
- Some are obvious – low hanging fruit
- Some require some research using the other QI tools such as:
 - Pareto Diagrams
 - Run Charts
 - Surveys
 - Histograms
 - Etc.
Obese Children

Life Style
- TV Viewing
- No Time For Food Prep
- No Outdoor Play
- Unsafe Juices
- Bottle Pacifier

Environment
- Built Environment For Strollers Not Toddling
- Few Community Recreational Areas or Programs
- Less Indoor Mobility
- Less Vigorous Exercise

Policies
- Policies

Genetics

Syndromes

Pre Natal Practices
- Excess Maternal Weight Gain
- Over Weight Newborn

Early Feeding Practices
- Decreased Breast Feeding
- Less Fluids and Veggies
- Minority Choices

5 Why's Technique

Problem (Effect)

Root Cause Analysis Rating Form

Impact Scoring Scale: Low = 1, Medium = 3, High = 5

Cause and Effect Exercise

Cause and Effect Diagram

Why Employees Are Late For Work?
Stages Of Team Development

Three Step Process for Healthy Teams

Top Ten Reasons Teams Fail
1. AIM Statement
2. Team Charter
3. Team Members
4. Problem Solving Process
5. Rapid Cycle
6. Team Maturity
7. Base Line Data
8. Training
9. Root Cause Analysis (RCA)
10. Pilot Testing

For More Information

NPHPSP User Guide (CDC)

Michigan QI Handbook

Public Health Memory Jogger
http://www.phf.org/resources/tools/Pages/Public_Health_Memory_Jogger_II.aspx

The Public Health Quality Improvement Handbook
http://www.phf.org/resources/tools/Pages/PublicHealthQIHandbook.aspx

Applications and Tools for Creating and Sustaining Healthy Teams
http://www.phf.org/resources/tools/Pages/Applications_and_Tools_for_Creating_and_Sustaining_Healthy_Teams.aspx

Thank you for your time and attention

Questions?